这道题的提议就是就最小生成树中的最大权所以我用了最小生成树prim算法
View Code
这道题可以是Dijkstra算法的变形,原来Dijkstra求最短时dis[i]里面存的是到起点的最短距离,而现在则是存由起点到i的最短路径里面的最大边权值了。。 #include#include #include #include #define maxn 207 using namespace std; const double inf = 99999999.0; bool vt[maxn]; double dis[maxn],map[maxn][maxn]; struct node { double x,y; }tagp[maxn]; int n; double ans; void init() { int i,j; for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { if (i == j) map[i][j] = 0; else map[i][j] = inf; } } } double length(int i,int j) { double x = tagp[i].x - tagp[j].x; double y = tagp[i].y - tagp[j].y; double s = sqrt(x*x + y*y); return s; } void prim() { int i,j,k; double min; ans = 0.0; for (i = 0; i < n; ++i) { vt[i] = false; dis[i] = map[0][i]; } vt[0] = true; for (k = 1; k < n; ++k) { j = 0; min = inf; for (i = 1; i < n; ++i) { if (!vt[i] && dis[i] < min) { j = i; min = dis[i]; } } vt[j] = true; if (ans < min) ans = min; if (j == 1) break; for (i = 1; i < n; ++i) { if (!vt[i] && dis[i] > map[i][j]) dis[i] = map[i][j]; } } } int main() { int i,j,cas = 1; while (~scanf("%d",&n)) { if (!n) break; init(); for (i = 0; i < n; ++i) { cin>>tagp[i].x>>tagp[i].y; } for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { map[i][j] = length(i,j); } } prim(); printf("Scenario #%d\n",cas++); printf("Frog Distance = %.3lf\n\n",ans); } return 0; }
View Code
#include#include #include #include #define maxn 207 using namespace std; double dis[maxn],map[maxn][maxn]; bool vt[maxn]; int n; const double inf = 9999999.0; struct node { double x,y; }p[maxn]; double Max(double a,double b) { return a > b ? a:b; } double Min(double a,double b) { return a < b ? a:b; } void init() { int i,j; for (i = 0; i < n; ++i) { vt[i] = false; for (j = 0; j < n; ++j) { if (i == j) map[i][j] = 0; else map[i][j] = inf; } } } double length(int i,int j) { double x = p[i].x - p[j].x; double y = p[i].y - p[j].y; double s = 1.0*sqrt(x*x + y*y); return s; } void Dijkstra() { int i,j,k; double min; for (i = 0; i < n; ++i) { dis[i] = map[0][i]; } vt[0] = true;; for (k = 1; k < n; ++k) { j = 0; min = inf; for (i = 1; i < n; ++i) { if (!vt[i] && dis[i] < min) { j = i; min = dis[i]; } } vt[j] = true; for (i = 0; i < n; ++i) { if (!vt[i]) { dis[i] = Min(dis[i],Max(map[i][j],dis[j]));//关键的改进是在这里,Min是确保最短路径 //Max是求边权值最大。。 } } } } int main() { int i,j,cas = 1; while (~scanf("%d",&n)) { if (!n) break; init(); for (i = 0; i < n; ++i) { cin>>p[i].x>>p[i].y; } for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { map[i][j] = map[j][i] = length(i,j); } } Dijkstra(); printf("Scenario #%d\n",cas++); printf("Frog Distance = %.3lf\n\n",dis[1]); } return 0; }